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Abstract—Researchers have shown via simulation and early
flight tests the feasibility and safety benefit of adding autonomy
to the concept of unmanned aircraft system (UAS) Traffic
Management (UTM), which is the Federal Aviation Administra-
tion’s (FAA) vision for air traffic management below 400 feet.
Such simulations are a complex interaction between UAS, UAS
operators, and the UTM system. Autonomy in this system is
achieved through the algorithms used for strategic de-confliction
(UAS launch scheduling) and flight planning (creates waypoints
from delays introduced by scheduling), which have been shown to
improve safety in congested UAS airspace. However, autonomous
algorithms have been known to make poor decisions without
notice, and thus need to be constantly monitored to prevent
these decisions from negatively affecting airspace performance
and safety. This is the impetus for developing and implementing
a fuzzy assurance black box monitor. Using a rule set generated
from parameters that have been shown to improve safety in
congested airspace, this monitor only considers the inputs and
outputs of the autonomous UTM system to estimate the risk of
the autonomous algorithms making poor decisions. Fuzzy rules
that fire during the operation of the fuzzy assurance monitor
help identify offending algorithms and their poor decisions, and
thus provide a level of explainable artificial intelligence (AI)
capability. The goal is to use fuzzy inference rules to evaluate
the performance of strategic de-confliction algorithms in the
UTM simulation. We investigate several airspace operational use
cases (i.e., normal and rogue behavior in congested airspace) and
several different autonomous UTM configurations (No Strategic
de-confliction and Strategic de-confliction). The simulation data
is analyzed with the help of the fuzzy inference system rules to
help identify offending algorithms and poor decisions that lead
to unsafe airspace. Our results show that the fuzzy assurance
monitor is able to use the inputs and outputs of the autonomous
UTM system to assign safety risks appropriately across use
cases and autonomous UTM configuration. The fuzzy assurance
monitor can also provide insight on the performance trade-offs
of black-box algorithms.

Index Terms—drone, UAS, UTM, autonomy, assurance

unmanned aircraft is still growing to the point that the Federal
Aviation Administration (FAA), NASA, other federal agencies
and industries are exploring potential operation of unmanned
aircraft system (UAS) traffic management. Currently the gen-
eral concept of UAS traffic management (UTM) [7] includes
FAA systems and operators communicating real-time. UAS
statuses and airspace restrictions are exchanged between FAA
systems and UAS operators. Researchers have recently shown
that autonomy can be added to the UTM concept through
the use of algorithms for strategic de-confliction and flight
planning, which improve safety in congested airspace.

In [4], the authors introduce an autonomous version of
UTM via simulation. The authors investigate the feasibility
of replacing some of the human-in-the-loop operations of
UTM with autonomy. They found that in a congested airspace
(i.e., 300 airspace operations per hour or more), autonomous
strategic de-confliction improves safety (i.e., Dynamic near
mid-air collisions are almost zero) by sacrificing mission
completion performance [4]. However, because of the known
intermittent aberrant behavior of autonomy [9], it is becoming
increasingly necessary to monitor and assure these algorithms
[10]. This is the impetus for the development of our fuzzy
assurance monitor.

The overall goal of autonomy assurance is to provide
efficacy in autonomous systems [11]. A system without certain
efficacy creates distrust. Thus, the distrust of autonomous
systems may hinder the progress of AI applications until the
research community can bridge the gap of distrust and reach
a satisfying equilibrium of AI usage and desired results [9]
[10]. We posit that the explanability of AI [13] decisions is a
step in the direction of system efficacy and assurance.

The UTM architecture is still in concept stage and thus there
are no production systems [7]. In this paper we chose to take a
black box monitoring approach and use fuzzy logic to assess
the risks of the algorithms in autonomous UTM of making
bad decisions. Below are works that are related to our efforts.

The authors in [3] and [2] investigated the use of fuzzy
logic for UAS control in strategic and tactical de-confliction.
Their approach is similar to our own, except their use of a
fuzzy inference system is to implement an autonomous version

I. INTRODUCTION

In recent years, the use of UAS and other air vehicles 
has expanded from mostly military/government applications to 
commercial and personal applications. The demand for small
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of UTM rather than risk evaluation. To our knowledge, there
are no other recent works that apply fuzzy logic to the UTM
concept.

In this paper we assure autonomous UTM by using a fuzzy
risk monitor for black box strategic de-confliction. The moni-
tor is based on a set of fuzzy rules derived from parameters and
concepts [4] that have shown to provide safety in congested
airspace. Also, the fired rules from this fuzzy inference system
(FIS) are used to identify offending algorithms and explain
their poor decisions.

Our contributions are as follows: (1) we use insight from pa-
rameters that have been shown to provide safety in congested
airspace to design fuzzy rules for an explainable autonomous
UTM fuzzy assurance monitor, (2) we implement this fuzzy
assurance monitor using MATLAB, and (3) we use several
airspace use cases and autonomous UTM configurations to
demonstrate the efficacy of this approach. The rest of this
paper is organized as follows. In Section 2 we introduce fuzzy
inference systems, and in Section 3 we discuss our fuzzy
assurance monitor implementation. In Section 4 we introduce
the experimental evaluation, Section 5 we discuss our results,
and in Section 6 we conclude the paper with a summary.

II. FUZZY INFERENCE SYSTEMS

A fuzzy FIS is a human-readable ruled-based system meant
to provide inferences while considering uncertainty [12]. The
inputs and outputs of a FIS are real numbers called crisp
values. Crisp values belong to bounded sets associated with
chosen ranges [1]. Human-readable labels are used to describe
the ranges. Each FIS input is called a fuzzy member and the
human-readable labels are called membership functions [12].
Membership functions are created based on expert knowledge
of data that represents the numerical ranges of members with
human-readable labels. The ranges can overlap to represent
uncertainty in labeling. Membership function labels are used to
create rules. These rules tie input label combinations to output
labels and result in human-readable conditional statements.

Fig. 1. Example Fuzzy Inference System diagram [14]

In operation, numerical values are feed into a FIS. The
values are labeled based on the membership functions. The
process of translating from numbers to labels is called fuzzifi-
cation. Rules are fired based on the input labels which provides
output labels. The reverse of fuzzification (defuzzication) takes
output labels and translates them to numbers. The two most

common types of FIS are Mamdani and Sugeno. In this paper,
we implement a Mamdani FIS using Matlab.

The example in Figure 1 illustrates a Mamdani FIS, where
crisp values come into the system and get mapped to the mem-
bership function (i.e., become fuzzified) in the Fuzzification
step. Then, every rule that corresponds to fuzzified values are
said to have fired during the Rule Evaluation step. Finally,
during the Defuzzification step, the ”fired” rules are evaluated
and produce a crisp output using defuzzification methods such
as centroid (center of mass), Fuzzy Or (maximum value), or
some other method [15].

III. FUZZY ASSURANCE MONITOR IMPLEMENTATION

Fig. 2. Placement of fuzzy inference systems in UTM

The illustration in Figure 2 shows a diagram of the mapping
of the fuzzy risk estimator to the inputs and outputs of
the autonomous UTM strategic de-conflictor (i.e., scheduler).
The risk estimator uses these inputs and outputs to begin
Further and Closer Warning percentage calculations (described
in sections 5A - 5B) and De-confliction Distance and Time
Impact metric calculations (described in sections 5C - 5D).
Then, these crisps metric calculations and percentages are
passed to the FIS to compute estimated risks.

The fuzzy members and bounded values for the risk estima-
tors are illustrated in Table 1 and described below in 5A - 5E.
The 12 fuzzy rules for Collision Risk, which involve Closer
and Further Warning, are derived from Table 2. Similarly, there
are 75 fuzzy rules for Efficiency Risk, which involve the use
of de-confliction Distance and Time Impact and Priority, but
because of space limitations, they are not listed.

TABLE I
PRE-PLANNING FUZZY MEMBERS
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A. Further Warning

Further Warning is a fuzzy member that receives bounded
inputs (0-1) in 2-dimensional space from the autonomous
UTM system as shown in Table I. The warnings are distance
checks between UAS and all obstacles (fixed and moving). The
values in Figure 3 are percentages of UAS mission waypoints
that come within 60 m of obstacle. The 60 m horizontal
threshold is chosen to be bigger than a Dynamic Near Midair
Collision (Dynamic sNMAC), which is the number of times
UAS breach the same area (15.24 meters horizontally) [4].The
further warning memberships are very clear (VC), mostly clear
(MC), partially clear (PC) and barely clear (BC).

Fig. 3. Further warning membership

Fig. 4. Closer warning membership

B. Closer Warning

Closer Warning is also a fuzzy member that receives
bounded inputs in 2-dimensional space similar to further
warning (0-1). The values in Figure 4 are percentages of UAS
mission waypoints that come within 40 m of any obstacle.
The 40 m threshold is chosen to be bigger than a Dynamic
sNMAC. The closer warning memberships are light close
collisions (LCC), many close collisions (MCC), and heavy
close collisions (HCC). The ranges for each member are
chosen to slightly increase from light to heavy to increase
the rate that the collision risk increases.

C. De-confliction Distance Impact

De-confliction Distance Impact is a fuzzy member that re-
ceive bounded inputs from the autonomous UTM system. The
De-confliction Distance Impact metric represents a percent

increase or decrease from the original distance, the percentages
are not bounded from 0 to 100 but from −∞ to ∞. The
distance of a flight plan is calculated using the euclidean
distance between adjacent points as shown in Equation 1
where N is the number of waypoints and W = [W1, W2, W3,
. . . Wn] is the list of ordered waypoints.

Eq 1. Distance =
∑N−1

i=1 ((Wi+1,x −Wi,x)
2 + (Wi+1,y −

Wi,y)
2 + (Wi+1,z −Wi,z)

2)1/2

The distance impact is found by calculating the distance
of a flight plan before and after de-confliction. Then the
differences are calculated through subtraction of the final and
initial distances which are then divided by the initial distances.
This process is shown through Equation 2.

Eq 2. PercentDistanceImpact = (DF −DI)÷DI

Eq 3. PercentTimeImpact = (TF − TI)÷ TI

Figure 5 shows the membership functions for de-confliction
distance impact. De-confliction distance impact has the follow-
ing membership functions: major improvement (MI), partial
improvement (PI), negligible difference (ND), partial deterio-
ration (PD) and major deterioration (MD). The ranges increase
away from the middle member to create dramatic increases in
risk as the mission is inflated or deflated.

Fig. 5. De-confliction distance impact membership

Fig. 6. De-confliction time impact membership

D. De-confliction Time Impact

De-confliction Time Impact is another fuzzy member that
receive bounded inputs (-∞ - ∞) as shown in Table 1.
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Similarly to distance impact, the De-confliction Time Impact
metric represents the percent changes in flight plan time
from before and after strategic de-confliction. The time is the
number of waypoints in a flight plan minus 1 for coding logic
(first waypoint is the start location at time 0 seconds). Then
the differences in time are calculated through subtraction of
the final and initial times. The differences are then divided by
the initial times. This process is shown through Equation 3.

The illustration in Figure 6 shows the membership func-
tions for de-confliction time impact. The membership func-
tions are similar to Distance Impact.

E. Priority

UAS priority is another fuzzy member that could receive
bounded (i.e., 0 - 9) input from the autonomous UTM system.
This fuzzy member allows different priorities to be placed
on UAS. The membership plots are shown in Figure 7. The
experiments use priority as a control to exhibit the sensitivity
of Efficiency Risk. In this paper, we fixed the priority to the
highest value (i.e., 9) for all UAS.

Fig. 7. Priority membership

F. Collision and Efficiency Risks

TABLE II
COLLISION RISK FUZZY RULE MATRIX

The output risks are percentages as seen in Figure 8 for
Collision and Efficiency Risks, which have the same mem-
bership functions. The membership functions are: barely risky
(BR), somewhat risky (SR), risky (R), very risky (VR) and
too risky (TR). The memberships are chosen arbitrarily such
that the first four ranges are similar in length and the last
(TR) is larger than all the rest . For our FIS, we tuned the

membership functions based on parameters and insight from
[4], which have been shown to improve safety in simulated
congested airspaces.

Fig. 8. Collision and Efficiency Risk membership

Fig. 9. Pre-planning collision risk rules

1) Collision Risk System: The risk increases as both the
Closer and Further warning increase. The Closer Warning is
weighed more than the Further Warning so the risk increases
faster when it goes up. The Collision Risk graph provides a
visual representation of the crisp input to output relationship,
see Figure 9.

Fig. 10. Pre-planning efficiency risk rules

2) Efficiency Risk System: The risk of losing mission effi-
ciency is based on the amount of distance and time inflation.
The risk jumps as the missions are inflated and stays around
zero when deflated, as seen in Figure 10. The system is
tuned to be more sensitive to time than distance because UAS
velocity is kept constant for the experiment, so increases or
decreases in time imply similar affects on distance.
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Fig. 11. Dynamic sNMAC results

Fig. 12. Plan Delay results

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our experimental setup is composed of an autonomous
UTM simulation taken from [4]. In our simulations we used
strategic de-confliction via a genetic algorithm (GA) [6] based
scheduler and a scheduler based on the NASA Stratway
algorithm [5]. Also, flight planning was done using the RRT*
algorithm [8]. We implemented our black box fuzzy inference
monitor using MATLAB (Mamdani). We received results from

Fig. 13. Collision Risk results

Fig. 14. Efficiency Risk results

our fuzzy monitor by running autonomous UTM Monte-Carlo
experiments using a multi-node cluster that had 8 operational
nodes, which collectively provided 384 available CPUs.

B. Experimental Procedure

In order to test the fuzzy assurance monitor’s ability to
properly assess autonomous UTM airspace safety, several
experiments were done with different autonomous UTM con-
figurations. (1) No strategic de-confliction (i.e., No Safety),
(2) Strategic de-confliction (i.e., GA Only), and (3) Strategic
de-confliction (i.e., Stratway Only). These experiments were
done using both normal UAS behavior (i.e., UAS conforming
to de-conflicted flight plans) and rogue UAS behavior (i.e.,
UAS deviating +/- 1000m in 2-dimensional space from de-
conflicted flight plans). Specifically, Monte-Carlo autonomous
UTM simulations were run with the probability of a UAS
going rouge varying from 0% to 90% (chose randomly) and
the number of UAS varying from 10 to 150.

V. RESULTS AND DISCUSSION

The experiments are designed to test the ability of the black
box fuzzy assurance monitor to analyze the inputs and outputs
of the autonomous UTM system and determine if there is an
impact to safety or efficiency and then to assign the associated
risk. In this phase of our work, we only test the fuzzy risk
monitor on safe operation (i.e., strategic de-confliction or fully
functioning autonomy algorithms) or unsafe (i.e., no strategic
de-confliction or fully failed autonomy algorithms). In future
work we plan to develop realistic models of varying levels of
failing autonomous algorithms to further test our fuzzy risk
monitor.

We know from [4] that when strategic de-confliction is
used in a congested airspace, Dynamic sNMACs are reduced
to almost zero, see our own results in Figure 11. Also, the
authors in [4] state that this safety comes at the cost of the
mission completion time being significantly affected, see our
own results in Figure 12.

A. Collision Risk

The results in Figure 13 suggests that Collision Risks are
extremely high (approximately 80%) when neither schedulers
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are used in the autonomous UTM system, but are extremely
low (approximately 10%) when either scheduler is used. This
aligns well with results from [4].

To explain the decisions made by our risk monitor, we look
into the fired fuzzy rules that produced: (1) the extremely high
risk percentage when no strategic de-confliction was used in
the autonomous UTM system and (2) the low risk percentage
when strategic de-confliction was used for one of the runs of
the Monte-Carlo simulation. This is illustrated in Rule 1. Note,
when there is no strategic de-confliction (i.e., no schedulers
are used), there is no pre-planned collision avoidance; thus,
it is extremely likely that the Closer Warning threshold of
40 m and Further Warning threshold of 60 m are violated.
In fact, according to Rule 1, to produce a crisp value of
80% or more (i.e., Collision Risk is Too Risky), both Closer
and Further Warning thresholds within the autonomous UTM
system would have to have been heavily exceeded by UAS
during the simulation.

Rule 1. If (Closer Warning is Heavy Close Collisions) and
(Further Warning is Barely Clear)
then (Collision Risk is Too Risky)

We use a similar process to explain why the risk monitor
assesses the inputs and outputs of the autonomous UTM
system as low risk when the schedulers are used. The Stratway
and GA schedulers (i.e., strategic de-confliction) decrease the
amount of UAS close encounters; and thus, lessen the number
of UAS that breach the closer and further thresholds. The end
result is a decrease in Dynamic sNMACs. According to Rules
2 - 5, Closer Warning has the smallest fuzzy category (i.e.,
LCC) and Further Warning runs the gambit of categories from
the smallest to the largest; however, since the overall crisp
output from the FIS is low risk (the smallest fuzzy category),
then rules in Rules 2 and 3 contribute more. This essentially
means that within the autonomous UTM system, there are
hardly any UAS breaching the closer and further warning
thresholds during the simulation.

Rule 2. If (Closer Warning is Light Close Collisions) and
(Further Warning is Very Clear) then (Collision Risk is
Barely Risky)

Rule 3. If (Closer Warning is Light Close Collisions) and
(Further Warning is Mostly Clear) then (Collision Risk is
Barely Risky)

Rule 4. If (Closer Warning is Light Close Collisions) and
(Further Warning is Partially Clear) then (Collision Risk is
Somewhat Risky)

Rule 5. If (Closer Warning is Light Close Collisions) and
(Further Warning is Barely Clear) then (Collision Risk is
Somewhat Risky)

B. Efficiency Risk

The results in Figure 14 suggests that Efficiency Risks are
extremely high (70-80%) when either scheduler is used in the
autonomous UTM system, but are extremely low (below 10%)

when neither scheduler is used. This aligns well with results
from [4].

Similarly, to explain the decisions made by our risk monitor
for Efficiency Risk, we look into the fired fuzzy rules that
produced: (1) the low risk percentage when no strategic de-
confliction was used in the autonomous UTM system and
(2) the extremely high risk percentage when strategic de-
confliction was used for one of the runs of the Monte-Carlo
simulation. Rule 6 corresponds to there being no strategic de-
confliction therefore there are no modifications to distance or
time, and thus there are no distance or time impacts. According
to Rule 6, when the Priority input is high (we choose the
highest value for all UAS) and both Distance Impact and Time
Impact inputs are negligible, then this fuzzy rule yields the
lowest fuzzy category and thus the lowest level of Efficiency
Risk.

Rule 6. If (Priority is Very Important) and (Distance Im-
pact is Negligible Difference) and (Time Impact is Negligible
Difference) then (Efficiency Risk is Barely Risky)

The Efficiency Risks are high when either the Stratway or
the GA schedulers are used as shown in Figure 14, because the
strategic de-confliction algorithms both add temporal offsets
to the launch of the UAS and distance to the mission through
changes in the flight path, which extends the mission com-
pletion time. The mission completion time gets extended even
further as the number of UAS increases. According to Rules
7 - 11, for any high priority UAS (which all of them were
chosen to be), the Efficiency Risk will be very high whenever
Distance or Time Impact inputs are reasonable high. This is
the case because Rule 7 fired (even though its contribution
could have been lower than the others), which yields a high
risk result even when the Distance Impact is small. This makes
sense, because either a delay in the start time of the UAS or
an increase in the mission distance will cause an increase in
the mission completion time.

Rule 7. If (Priority is Very Important) and (Distance
Impact is Negligible Difference) and (Time Impact is Major
Deterioration) then (Efficiency Risk is Too Risky)

Rule 8. If (Priority is Very Important) and (Distance
Impact is Partial Deterioration) and (Time Impact is Partial
Deterioration) then (Efficiency Risk is Too Risky)

Rule 9. If (Priority is Very Important) and (Distance
Impact is Partial Deterioration) and (Time Impact is Major
Deterioration) then (Efficiency Risk is Too Risky)

Rule 10. If (Priority is Very Important) and (Distance
Impact is Major Deterioration) and (Time Impact is Partial
Deterioration) then (Efficiency Risk is Too Risky)

Rule 11. If (Priority is Very Important) and (Distance
Impact is Major Deterioration) and (Time Impact is Major
Deterioration) then (Efficiency Risk is Too Risky)

Overall, the risk predictions of the fuzzy assurance monitor
align with the expected behavior of the autonomous UTM
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system given specific airspace situations. Also, the fired fuzzy
rules help explain the decisions made by the risk assessor.

VI. CONCLUSION

In summary, this paper shows that the fuzzy monitor outputs
on safety and efficiency risks align with the experimental data.
The fuzzy rules are shown to reveal algorithmic characteristics
in the simulation. The knowledge obtained through data analy-
sis with the fuzzy collision and efficiency systems show the ef-
fects of using Stratway and genetic algorithm on the simulation
performance and can be used for determining potential tuning.
This experiment is meant to inspire confidence that these a-
priori estimates can be used to gauge future performance. It
also inspires confidence that explainability through fuzzy logic
can bolster the quality of data analytics. In future work, we
hope to be able to assess the risks of algorithms that seek to
autonomously manage the uncertainty due to noisy control and
navigation sensors. Also, we plan to develop realistic models
with varying levels of failing autonomous algorithms to further
test our fuzzy risk monitor.

REFERENCES

[1] L. A. Zadeh. Is there a need for fuzzy logic? InInformation Sci-
ences,volume vol. 178, pages 2751–2779, 2008.

[2] B. Cook et al., ”A Fuzzy Logic Approach for Separation As-
surance and Collision Avoidance for Unmanned Aerial Systems”
Available At: https://ntrs.nasa.gov/api/citations/ 20190027045/down-
loads/20190027045.pdf, 2018.

[3] B. Cook et al., ”A Fuzzy Logic Approach for Low Altitude
UAS Traffic Management (UTM)”, In American Institute of Aero-
nautics and Astronautics Infotech @ Aerospace, Available At:
https://arc.aiaa.org/doi/10.2514/6.2016-1905, 2016.

[4] L. Watkins et al., ”An Investigative Study Into An Autonomous UAS
Traffic Management System For Congested Airspace Safety” To Appear
in IEEE International Workshop on Communication, Computing, and
Networking in Cyber-Physical Systems (CCNCPS), June 2021.

[5] G. Hagen et al., ”Stratway: A Modular Approach to Strategic Conflict
Resolution”, Aviation Technology, Integration, and Operations (ATIO)
Conferences, September 2011.

[6] Matlab Website, Available At: https://www.mathworks.com/discovery/
genetic-algorithm.html

[7] FAA UTM Version 2.0 Document, Available At:
https://www.faa.gov/uas/research development/traffic management/
media/UTM ConOps v2.pdf

[8] Matlab Website, Available At: https://www.mathworks.com/help/driving/
ref/pathplannerrrt.plan.html

[9] Yavar Bathaee, ”The Artificial Intelligence Black Box And The Failure Of
Intent And Causation”, Harvard Journal of Law And Technology, Volume
31, Number 2 Spring 2018

[10] U. Topcu et al., ”Assured Autonomy: Path Toward Living
With Autonomous Systems We Can Trust”, 2020, Available
At: https://cra.org/ccc/wp-content/uploads/sites/2/2020/10/Assured-
Autonomy-Workshop-Report-Final.pdf

[11] D.Porter et al., ”Trustworthy Autonomy: A Roadmap to Assurance
Part I: System Effectiveness ”, Available At: https://www.ida.org/-
/media/feature/publications/t/tr/trustworthy-autonomy-a-roadmap-to-
assurance/p-10768.ashx

[12] T. Bahirat, ”Fuzzy Logic Tutorial History, Implemen-
tation, Advantages and how it’s used”, Available At:
https://www.mygreatlearning.com/blog/fuzzy-logic-tutorial/

[13] P. D’Alterio et al., ”Constrained Interval Type-2 Fuzzy Classification
Systems for Explainable AI (XAI)” In IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), 2020.

[14] A. Golabchi et al., ”A fuzzy logic approach to posture-based ergonomic
analysis for field observation and assessment of construction manual
operations”, In Canadian Journal of Civil Engineering, January 2016.

[15] V. Rao (1995), ”C++ Neural Networks and Fuzzy Logic” MTBooks,
IDG Books Worldwide, Inc. ISBN: 1558515526

2021 10th International Conference on Information and Automation for Sustainability (ICIAfS)

476


